基於聽覺感知模型之類神經網路及其在語者識別上之應用 (Two-stage Attentional Auditory Model Inspired Neural Network and Its Application to Speaker Identification) [In Chinese]

نویسندگان

  • Yu-Wen Lo
  • Yuan-Fu Liao
  • Tai-Shih Chi
چکیده

根據神經生理學研究,耳朵會針對聲音的各個頻率進行分頻,並產生出聽覺頻譜,研究人 員根據專注聽覺現象和生物聽覺實驗,也發現了大腦聽覺皮質上神經作用的模式。於本論文中, 我們運用類神經網路,建構出一種模擬人類聽覺的類神經網路模型,並在語者識別這個應用上 進行討論,期望能成功連結神經生理學的知識與工程的技術。而我們所設計的模型,是利用兩 層不同維度的卷積神經網路(Convolutional Neural Network),分別模擬初期耳蝸階段及大腦皮質 階段,透過設計卷積核初始值,即耳蝸階段多組一維分頻濾波器和大腦皮質階段同時解析時頻 資訊的二維濾波器,以使模型能夠快速地達到收斂狀態。而透過模型訓練,根據目的與環境變 因的不同,模型會自動調整其中參數,使輸入資料映射至目標的型態。同時我們也針對所提出 的模型架構,進行了多種形態的比較,進而發現在給定初始值的狀況下,即使訓練不夠充分, 也能產生不錯的結果。

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

基於深層遞迴類神經網路之多通道電視回聲消除系統(Multi-Channel Television Echo Cancellation based on Deep Recurrent Neural Networks)[In Chinese]

本論文研究智慧型電視操作情境下之電視節目回聲消除,希望能在電視節目持續播 放的情形下,仍能錄到說話者的清晰語音,並能應用在即時語音通訊與遠距語音辨 認人機介面上。本論文的回聲消除系統演算法是以遞迴類神經網路(Recurrent Neural Network,RNN)演算法,再配上多通道麥克風做回聲消除,達到人聲增強, 抑制噪音雜訊,提高語音清晰度。實驗分別實作單純電視節目聲、人聲混電視節目 聲兩種實驗,再導入前五秒無人聲預訓練,後五秒有人聲之電視節目回聲消除模式 實驗,實驗結果以回聲衰減量來判斷效能優劣。實驗顯示,以多通道深層遞迴類神 經網路效能優於其他方法,透過多聲道 RNN處理,的確能有效地濾除雜訊。 關鍵詞: 聲學回聲消除、適應性濾波器、類神經網路、遞迴類神經網路 The 2016 Conference on Computational Linguistics and Spee...

متن کامل

以二維共振峰分布建立語者音色模型及其在語者驗證上之應用 (Using 2D Formant Distribution to Build Speaker Models and Its Application in Speaker Verification) [In Chinese]

語音是人類彼此間溝通最方便也最首要的方式。語音不但是用於傳播信息,也是一項重要的生物特徵 (biometrics),可以用來做身份識別之用。對於利用電腦來分析語音這方面的研究,大致可分為兩個領域: 一是語詞識別(speech recognition),一是語者識別(speaker recognition)[1-4]。若是要分辨某一個語音 樣本是否來自某一個特定的語者,則又稱為語者驗證(speaker verification 或 speaker authentication)。 語者驗證又可細分為限定語詞(text dependent)與非限定語詞(text independent)兩種方式[5,6]。在限 定語詞的方式中,用來比對的兩段語音樣本,其語音之內容須為相同或相似。而在非限定語詞的方式下, 其語句之內容可為不同。後者之處理難度較高,但在取樣上較不受限,其應用也較為廣泛。本研...

متن کامل

Automatic labeling of troponymy for Chinese verbs

以同義詞集與詞彙語意關係架構而成的詞彙知識庫,如英語詞網 (Wordnet)、歐語詞 網 (EuroWordnet)等,已有充分的研究,詞網的建構也已相當完善。基於相同的目的,中 研院語言所亦已建立大規模之中文詞彙網路 (Chinese Wordnet,CWN),旨在提供完整的 中文辭彙之詞義區分。然而,在目前之中文詞彙網路系統中,由於目前主要是採用人為判 定來標記同義詞集之間的語意關係,因此這些標記之數量尚未達成可行應用之一定規模。 因此,本篇文章特別針對動詞之間的上下位詞彙語意關係 (Troponymy),提出一種自動標 記的方法。我們希望藉由句法上特定的句型 (lexical syntactic pattern),建立一個能夠自 動抽取出動詞上下位的系統。透過詞義意判定原則的評估,結果顯示,此系統自動抽取出 的動詞上位詞,正確率將近百分之七十。本研究盼能將本方法應用於正在發展中...

متن کامل

大規模詞彙語意關係自動標示之初步研究: 以中文詞網(Chinese Wordnet)為例 (A Preliminary Study on Large-scale Automatic Labeling of Lexical Semantic Relations: A Case study of Chinese Wordnet) [In Chinese]

近年來, 以知識資源為本的自然處理技術已成為一種重要的研究取向。 對於各種詞彙語意資源之建構, 包括電子辭典 (Lexicon)、 同義詞詞林 (Thesaurus)、 詞彙網路 (WordNet), 甚至知識本體 (ontologies), 已成為一個不可 抵擋的趨勢。 其中, 詞彙網路是在計算語言學相關領域中, 目前最為普遍利 用之一項詞彙語意資源。 然而, 詞彙網路之建構是一項耗時費力之基礎工程。 對於世界上許多使 用頻度不高的語言而言, 更是一項艱鉅之任務。 本文提出一個借力於普林斯 頓英語詞網 (Princeton WordNet) 與歐語詞網 (EuroWordNet) 之 bootstrapping 方法, 應用在正在發展的中文詞網詞彙語意關係之自動標記工作上。 實 驗的結果與初步評估證明, 此法對於詞網建構是一個相當可行的方式。

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017